257 research outputs found

    On the Sperner property for the absolute order on complex reflection groups

    Get PDF
    Two partial orders on a reflection group, the codimension order and the prefix order, are together called the absolute order when they agree. We show that in this case the absolute order on a complex reflection group has the strong Sperner property, except possibly for the Coxeter group of type DnD_n, for which this property is conjectural. The Sperner property had previously been established for the noncrossing partition lattice NCWNC_W, a certain maximal interval in the absolute order, but not for the entire poset, except in the case of the symmetric group. We also show that neither the codimension order nor the prefix order has the Sperner property for general complex reflection groups.Comment: 12 pages, comments welcome; v2: minor edits and journal referenc

    Counting Shellings of Complete Bipartite Graphs and Trees

    Full text link
    A shelling of a graph, viewed as an abstract simplicial complex that is pure of dimension 1, is an ordering of its edges such that every edge is adjacent to some other edges appeared previously. In this paper, we focus on complete bipartite graphs and trees. For complete bipartite graphs, we obtain an exact formula for their shelling numbers. And for trees, we propose a simple method to count shellings and bound shelling numbers using vertex degrees and diameter.Comment: 22 pages, 6 figure

    Balance constants for Coxeter groups

    Full text link
    The 1/31/3-2/32/3 Conjecture, originally formulated in 1968, is one of the best-known open problems in the theory of posets, stating that the balance constant (a quantity determined by the linear extensions) of any non-total order is at least 1/31/3. By reinterpreting balance constants of posets in terms of convex subsets of the symmetric group, we extend the study of balance constants to convex subsets CC of any Coxeter group. Remarkably, we conjecture that the lower bound of 1/31/3 still applies in any finite Weyl group, with new and interesting equality cases appearing. We generalize several of the main results towards the 1/31/3-2/32/3 Conjecture to this new setting: we prove our conjecture when CC is a weak order interval below a fully commutative element in any acyclic Coxeter group (an generalization of the case of width-two posets), we give a uniform lower bound for balance constants in all finite Weyl groups using a new generalization of order polytopes to this context, and we introduce generalized semiorders for which we resolve the conjecture. We hope this new perspective may shed light on the proper level of generality in which to consider the 1/31/3-2/32/3 Conjecture, and therefore on which methods are likely to be successful in resolving it.Comment: 27 page

    Quantum Bruhat graph and tilted Richardson varieties

    Full text link
    Quantum Bruhat graph is a weighted directed graph on a finite Weyl group first defined by Brenti-Fomin-Postnikov. It encodes quantum Monk's rule and can be utilized to study the 33-point Gromov-Witten invariants of the flag variety. In this paper, we provide an explicit formula for the minimal weights between any pair of permutations on the quantum Bruhat graph, and consequently obtain an Ehresmann-like characterization for the tilted Bruhat order. Moreover, for any ordered pair of permutations uu and vv, we define the tilted Richardson variety Tu,vT_{u,v}, with a stratification that gives a geometric meaning to intervals in the tilted Bruhat order. We provide a few equivalent definitions to this new family of varieties that include Richardson varieties, and establish some fundamental geometric properties including their dimensions and closure relations.Comment: 28 page
    • …
    corecore